
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2003; 42:665–693 (DOI: 10.1002/�d.551)

A time-implicit high-order compact di�erencing and �ltering
scheme for large-eddy simulation

D. P. Rizzetta1;∗;†, M. R. Visbal1 and G. A. Blaisdell2

1Air Force Research Laboratory; Wright-Patterson Air Force Base; OH 45433-7521; U.S.A.
2Purdue University; West Lafayette; IN 47907-1282; U.S.A.

SUMMARY

This work investigates a high-order numerical method which is suitable for performing large-eddy simu-
lations, particularly those containing wall-bounded regions which are considered on stretched curvilinear
meshes. Spatial derivatives are represented by a sixth-order compact approximation that is used in con-
junction with a tenth-order non-dispersive �lter. The scheme employs a time-implicit approximately
factored �nite-di�erence algorithm, and applies Newton-like subiterations to achieve second-order tem-
poral and sixth-order spatial accuracy. Both the Smagorinsky and dynamic subgrid-scale stress models
are incorporated in the computations, and are used for comparison along with simulations where no
model is employed. Details of the method are summarized, and a series of classic validating compu-
tations are performed. These include the decay of compressible isotropic turbulence, turbulent channel
�ow, and the subsonic �ow past a circular cylinder. For each of these cases, it was found that the
method was robust and provided an accurate means of describing the �ow�eld, based upon compar-
isons with previous existing numerical results and experimental data. Published in 2003 by John Wiley
& Sons, Ltd.

KEY WORDS: high-order numerical method; large-eddy simulation; compact �nite-di�erence scheme;
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1. INTRODUCTION

Due to severe resolution requirements resulting in excessive expenditure of computational
resources, direct-numerical simulation (DNS) of turbulent �ows is generally limited to rela-
tively low Reynolds numbers and to simple geometric con�gurations. In order to reduce these
demands, particularly for practical applications, it is desirable to model certain aspects of the
turbulence in some manner. This has been di�cult because the large-scale structures, which
contain most of the turbulent energy, vary considerably from one �ow to another, thereby
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precluding a general description. In large-eddy simulation (LES), only the small-scale struc-
tures are left unresolved and must be accounted for through use of a subgrid-scale (SGS) tur-
bulence model. LES thus extends the class of �ows that can be simulated for a given amount
of computational resources beyond those of DNS. Also, since the small-scale structures are
believed to be homogeneous and possess a universal character, they may be more easily
and reliably modelled. Additionally, the small structures contain only a fraction of the total
turbulent kinetic energy, and therefore it is generally assumed that they may be accounted for
without unduly a�ecting the large eddies.
The oldest and most popular subgrid-stress model is the formulation due to Smagorinsky [1],

in which an eddy viscosity is assumed to be proportional to the product of the local large-scale
strain rate and the square of the local grid scale. The coe�cient of proportionality is commonly
taken to be a constant, but its value must be adjusted a priori for each speci�c application.
Several attempts have been made to improve the Smagorinsky model, and it has been applied
successfully, both in its original and modi�ed forms, to a number of simulations that include
decaying isotropic turbulence [2], turbulent planar channel �ows [3–7], compressible turbulent
�ows [8, 9], and turbulent mixing layers [10]. These computations and others have identi�ed
the following major de�ciencies of the Smagorinsky model: (1) the eddy viscosity constant
is �ow dependent, (2) limiting behaviour near solid boundaries and in laminar regimes is
incorrect, (3) the model does not account for the backscatter of energy from small to large
scales [11], (4) the model is overly dissipative, and (5) the model does not account for
compressibility e�ects [9].
More recent large-eddy simulations have been performed employing the dynamic subgrid-

scale model of Germano et al. [12]. The major advantage of this model is that it adjusts to
local �ow conditions by using the resolved large-scale information to predict the e�ects of
the small-scale structures. It thus has the potential for treating more complex �ows by LES
than was previously possible. The dynamic model allows for the proper behaviour near solid
surfaces or in laminar regions, and does not preclude the backscatter of turbulent energy, pro-
viding improvement over a less sophisticated approach. The original model was extended for
use in compressible �ows by Moin et al. [13], and now commonly utilizes the re�nement due
to Lilly [14]. El-Hady et al. [15] applied the model to a transitional supersonic axisymmetric
boundary layer with satisfactory results, while other applications have consisted of channel
�ows [16–18], a lid-driven cavity [19], and mixing layers [10].
Despite advances in computing capacity, large-eddy and direct simulations are still limited

by resolution requirements of �ows at high Reynolds number, especially near wall-bounded
regions. Spectral and pseudo-spectral methods have successfully provided highly accurate
results for simple geometries, but lack the �exibility which is required for treating more
complex practical con�gurations. Although �nite-di�erence and �nite-volume techniques are
considerably more versatile, low-order methods cannot satisfy the resolution demands of high-
Reynolds number �ows. Di�erence schemes with high spatial accuracy are therefore attractive
for LES and DNS computations, and have been shown to be desirable for their ability to
improve subgrid model performance and to reduce aliasing errors [20, 21]. Currently, most of
these procedures are employed in conjunction with explicit time advancement algorithms. The
focus of the work presented here is to evaluate the use of a time-implicit high-order compact
�nite-di�erence scheme for large-eddy simulations.
A major problem associated with the application of non-dissipative spatial discretizations to

LES on general curvilinear stretched meshes, is the generation of high-frequency modes which
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contaminate the solution and can ultimately result in numerical instability. To overcome this
di�culty in the present approach, the solution variables are �ltered by employing tenth-order
Pade-type low-pass operators, which were previously developed and evaluated by Gaitonde
et al. [22]. This compact di�erencing and �ltering technique has proven to be highly accurate
and robust for wave propagation [22], and for the simulation of vortical �ows [23]. However,
the impact of �ltering on LES has not been assessed previously, and this constitutes one of
the main objectives of the present investigation.
While explicit methods provide accurate temporal resolution for LES and DNS, the time

step size is dictated by stability constraints of the algorithm rather than by the frequency con-
tent of the large-scale structures. This can be a severe constraint, particularly for low-Mach
number and wall-bounded �ows. In addition, the situation is exacerbated since computa-
tions must be carried out for extended periods of time in order to collect statistical informa-
tion. The implicit technique may thus a�ord a desirable alternative by allowing larger time
increments.
The present e�ort considers the application of a time-implicit high-order compact di�er-

encing and �ltering scheme to compressible large-eddy simulations. The governing equations
are summarized, including a description of the SGS stress models, and details of the numer-
ical procedure are presented. Computations are performed for a series of classic validating
�ows, consisting of the decay of compressible isotropic turbulence, turbulent channel �ow,
and the subsonic �ow past a circular cylinder. Large-eddy simulations and results employ-
ing no subgrid-stress model are compared for each case, along with experimental data and
previous existing computations.

2. GOVERNING EQUATIONS

The governing equations are the unsteady three-dimensional compressible Favre �ltered
Navier–Stokes equations, written in non-dimensional variables and expressed notationally in
the following conservative form:
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@�
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Re
Fv

)
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Re
Gv

)
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@�

(
H − 1

Re
Hv
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Here t is the time, �, �, � the computational co-ordinates, Q the vector of dependent variables,
F , G, H the inviscid �ux vectors, Fv, Gv, Hv the viscous �ux vectors, and S a vector source
term that is non-zero only for the computation of planar channel �ows. The �ltered form of
an arbitrary variable f, is given by

�f=
∫
V

Gf dV (2)

where G is the grid �ltering function and the integration is carried out over the entire �ow
domain. This allows f to be decomposed into its large-scale ( �f) and subgrid-scale (fsg)
components

f= �f + fsg (3)
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It is then convenient for compressible �ows to recast the large-scale component in terms of
a Favre-averaged variable

f̃=
�f
��

(4)

With this formulation, the vector of dependent variables is given as

Q=
1
J



��

��ũ
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��ũŨ + �x �p
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with the vector source term
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where
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In the preceding expressions, ũ; ṽ; w̃ are the Cartesian velocity components, �� the density, �p
the pressure, and T̃ the temperature. All length scales have been non-dimensionalized by a
representative distance lr , and dependent variables have been normalized by their reference
values except for �p which has been non-dimensionalized by �ru2r . Components of the heat
�ux vector and stress tensor may be expressed as
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@ũj
@�k

− 2
3
	ij
@�l
@xk

@ũk
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while the corresponding subgrid-scale stress and heat �ux are provided by

�ij =−Re ��(ũiuj − ũiũj) (19)

Qi = Re ��(ũiT − ũiT̃ ) (20)

For direct-numerical simulations, all variables may be replaced by their un�ltered forms and
�ij and Qi vanish, whereas for large-eddy computations, �ij and Qi are obtained from the SGS
model.
The Sutherland law for the molecular viscosity coe�cient �̃ and the perfect gas relationship

�p=
��T̃
�M 2

r
(21)

are also employed, as is Stokes’ hypothesis for the bulk viscosity coe�cient.
Complete de�nitions of the nomenclature appearing in the above and subsequent equations

may be found in Reference [24].

2.1. Smagorinsky subgrid-stress model

The �rst subgrid stress model was developed for incompressible �ows by Smagorinsky [1],
based upon the assumption that the turbulent kinetic energy production of the small-scale
structures is balanced by dissipation. The compressible version of the model in trace-free
form is given as

�t =ReC�2 ��S̃M (22)

where

S̃M =(2S̃ijS̃ij)1=2 (23)

is the magnitude of the rate-of-strain tensor, and
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The eddy-viscosity length scale is taken as

�=
(
1
J

)1=3
(25)

C is the eddy-viscosity model constant, and

�ij − 1
3
�kk	ij= − 2�t

(
S̃ij − 1

3
S̃kk	ij

)
(26)

The isotropic part of the stress tensor, 1
3�kk , is commonly neglected in low Mach num-

ber �ows and the model degenerates to the original Smagorinsky form. For compressible
applications, this term is accounted for according to Yoshizawa [25] as

�kk =2CI�2 ��S̃2
M (27)
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To complete closure of the model, the subgrid-scale heat �ux vector is speci�ed in terms of
a constant turbulent Prandtl number as

Qi=−
(
�t
Prt

)
@�j
@xi

@T̃
@�j

(28)

The original Smagorinsky constant was given as CS =
√
C. In near-wall regions, CS must

be multiplied by the van Driest damping factor

1− exp
(
n+

A+

)
(29)

for the eddy viscosity to attain a more correct limiting behaviour, where n+ is the normal
distance from the solid surface in law-of-the-wall co-ordinates, and A+ is the van Driest
constant.

2.2. Dynamic subgrid-stress model

A dynamic SGS model was �rst proposed by Germano et al. [12] for incompressible �ows,
and extended by Moin et al. [13] for compressible applications. Its general formulation is
identical to that of Smagorinsky and Yoshizawa given by Equations (22)–(28). In this descri-
ption, however, the model ‘constants’ C and CI are computed as a function of time and
space from the energy content of the resolved large-scale structures. This is accomplished by
introducing a test �lter function Ĝ, with a �lter width that is wider than the computational
mesh, where its application is represented as

f̂=
∫
V

Ĝf dV: (30)

Di�erences between the subtest-scale stress and the subgrid-scale stress are then used to obtain
values for the model constants. Details of the derivation may be found in References [12–14]
which result in
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where
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The normal stress constant is given by

CI�2 =
〈Lkk〉

〈2(�̂=�)2 �̂� ˆ̃S2
M − 2 �̂�S̃2

M 〉
(34)

For the above expressions, the quantities enclosed by angled brackets (〈 〉) indicate that
a spatial average is to be performed along directions in which a particular �ow may be
homogeneous. This is necessary to prevent certain quantities from vanishing, for example
the denominator of Equation (34), which would then invalidate evaluation of the coe�-
cients. In complex three-dimensional �ows, more localized space and time averages must be
employed. Recent attempts to perform such averages include the works of Piomelli and Liu
[26], Meneveau et al. [27], and Wu and Squires [28]. When extended to the heat �ux vector,
the analysis also allows the turbulent Prandtl number to be determined as

Prt =C�2 〈NiNi〉
〈−KiNi〉 (35)

where

Ki= �̂�ũiT̃ − 1
�̂�
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(37)

The only adjustable parameter inherent in the model is the ratio of the test-�lter width to
the grid-�lter width, �̂=�. For all of the computations presented here, this ratio is taken
as 2.0, which is consistent with the formulation of Germano et al. [12]. Besides the added
complexity of the model formulation and associated numerical implementation, a major dis-
advantage of the model are the additional computational resources required to evaluate the
model coe�cients. In the computational examples that follow, the coe�cients C, CI , and Prt
were numerically restricted to always be non-negative. Details of the test �lter application are
described in the following section.

3. NUMERICAL METHOD

Time-accurate solutions to Equation (1) were obtained numerically by the implicit approxi-
mately factored �nite-di�erence algorithm of Beam and Warming [29] employing Newton-like
subiterations [30], which has evolved as an e�cient tool for generating solutions to a wide
variety of complex �uid �ow problems, and may be represented notationally as follows:
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Published in 2003 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:665–693



A HIGH-ORDER SCHEME FOR LARGE-EDDY SIMULATION 673
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In this expression, which was employed to advance the solution in time, Qp+1 is the p+ 1
approximation to Q at the n+1 time level Qn+1, and �Q=Qp+1 −Qp. For p=1, Qp=Qn.
Second-order accurate backward-implicit time di�erencing has been used to represent temporal
derivatives, and spatial di�erence operators appearing in the explicit portion of the algorithm
(right-hand side) were evaluated by a sixth-order compact di�erence scheme. For convenience,
the source term S has been treated explicitly, which does not adversely impact stability due
to the use of subiteration.
The implicit segment of the algorithm incorporated second-order accurate centered di�er-

encing for all spatial derivatives, and utilized nonlinear arti�cial dissipation [31] to augment
stability. E�ciency was enhanced by solving this implicit portion of the factorized equations
in diagonalized form [32]. Temporal accuracy, which can be degraded by use of the diagonal
form, is maintained by utilizing subiterations within a time step. This technique has been
commonly invoked in order to reduce errors due to factorization, linearization, and explicit
application of boundary conditions. It is useful for achieving temporal accuracy on overset
zonal mesh systems, and for a domain decomposition implementation on parallel computing
platforms. Any deterioration of the solution caused by the use of arti�cial dissipation and by
lower-order spatial resolution of implicit operators is also reduced by the procedure. Three
subiterations per time step have been applied for the computations presented here, which have
been show to be suitable for previous computations [33].
The compact di�erence scheme employed on the right-hand side of Equation (38) is based

upon the pentadiagonal system of Lele [34], and is capable of attaining spectral-like resolution.
This is achieved through the use of a centered implicit di�erence operator with a compact
stencil, thereby reducing the associated discretization error. The sixth-order tridiagonal subset
of Lele’s system is illustrated here in one spatial dimension as



(
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+
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(
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i+1
= a

(
fi+1 − fi−1

2

)
+ b

(
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4

)
(39)

with


=1=3; a=14=9; b=1=9 (40)

The scheme has been adapted by Visbal and Gaitonde [35] as an implicit iterative time-
marching technique, applicable for unsteady vortical �ows. It is used in conjunction with a
10th-order non-dispersive spatial �lter developed by Gaitonde et al. [22], which has been
shown to be superior to the use of explicitly added arti�cial dissipation for maintaining both
stability and accuracy on stretched curvilinear meshes [23].
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In the computational examples that follow, the test �lter incorporated for the dynamic
subgrid stress model was formulated as a one-dimensional seven-point explicit centered stencil
in each co-ordinate direction. Coe�cients of the stencil were obtained by performing a least
squares curve �t of the �lter transfer function to that of a sharp-cuto� �lter, where the �lter
width was approximately twice that of the 10th-order spatial �lter which was employed for
solution of the �ow equations. Spatial derivatives which must be evaluated for the computation
of S̃M were approximated by fourth-order explicit stencils, which were shown to be adequate
in preliminary studies.
The aforementioned features of the numerical algorithm are embodied in an existing fully-

vectorized time-accurate three-dimensional computer code FDL3DI [35], which has proven to
be reliable for steady and unsteady �uid �ow problems, including the simulation of �ows over
delta wings with leading-edge vortices [30, 36–39], vortex breakdown [36–39], and the direct-
numerical simulation of transitional wall jets [39] and synthetic jet actuators [40]. While at-
tention of this investigation is concentrated on the implicit time-advancement method, FDL3DI
also provides the optional fourth-order Runge–Kutta explicit integration scheme (RK4),
implemented in low-storage form [41].

4. RESULTS

Results of speci�c validating computations are described below, a more comprehensive pre-
sentation of which appears in Reference [24]. Flow conditions and associated parameters for
each of the cases considered are found in Table I. In all situations where periodic boundaries
occur, these are implemented numerically by employing an overlap of �ve grid points in the
mesh across the domain edges. With this procedure, it is unnecessary to revert to either a one-
sided di�erence stencil or reduced spatial accuracy at domain boundaries. A minimal compu-
tational overhead is incurred, but sixth-order central di�erencing and the overall integrity of
the scheme is maintained.
For the computations that follow, we use the term ‘no model’ to refer to solutions in which

no subgrid-stress model was explicitly employed. In some case, the grids utilized for these
no-model results may have been su�ciently �ne to resolve all the important physical scales,
so that they may be considered direct numerical simulations (DNS). Otherwise, such solutions
are sometimes designated monotonically integrated large-eddy simulation (MILES [24, 42]),
whereby nonlinear high-frequency �lters built into numerical algorithms provide implicit SGS
models [43]. In the present applications, this was engendered by the 10th-order non-dispersive
spatial �lter.

Table I. Flow conditions and parameters.

Case lr ur Mr Re CS CI A+

Decay (Domain size)=2� Initial mean sound speed 1.0 536.9 0.0920 0.0066
Channel Channel height Mean centreline velocity 0.1 7700.0 0.0920 0.0000 25.0
Cylinder Cylinder diameter Freestream velocity 0.1 3900.0 0.0650 0.0000 25.0

Published in 2003 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:665–693



A HIGH-ORDER SCHEME FOR LARGE-EDDY SIMULATION 675

4.1. Compressible decaying isotropic turbulence

One of the simplest compressible turbulent �ow�elds is that of decaying isotropic turbulence.
This �ow has been used to investigate compressible formulations of SGS models for large-
eddy simulations by Moin [13] and Spyropoulos and Blaisdell [44] among others. For the
present computations, the domain size is (2�× 2�× 2�) in (x; y; z), which is described by a
mesh of uniformly distributed grid points. Periodic conditions are enforced at all edges of the
domain boundary. The �ow�eld is initialized by specifying the three-dimensional spectra for
velocity, density and temperature as described in Reference [44]. Although improved initial
conditions which do not generate acoustic waves are available [45], the current set was chosen
because previous DNS and LES computations [44] are available for comparison.
The isotropic turbulence simulations considered here correspond to Case 6 of Reference

[44]. A reference length lr is chosen so that the domain size has a length of 2� on each side,
as noted above. The length scale of the turbulence is then de�ned by specifying the form of
the initial three-dimensional spectra as

E3D∝ k4 exp[−2(k=kp)2] (41)

where k is the magnitude of the wave number vector, and the wave number at the peak in
the spectrum kp is set to 4. Root-mean-square (RMS) levels of the velocity, density, and
temperature are established by adjusting the proportionality constant in the spectra. The RMS
level of the velocity is speci�ed so that the initial turbulent Mach number Mt = 0:4, where
Mt is de�ned as the ratio of the RMS magnitude of the �uctuating velocity to the mean
speed of sound. The reference velocity ur is chosen to be the initial mean sound speed, so
that Mr = 1. In addition to the turbulent Mach number, the velocity �eld is parameterized by
the fraction of energy in the dilatational part of the velocity, � (see Reference [44]). In the
current simulations, initial values are given by

�=0:2 (42)

�′rms
2=〈�〉2 = 0:032 (43)

T ′
rms

2=〈T 〉2 = 0:005 (44)

The Reynolds number Re is determined as 536.9, which corresponds to a turbulent Reynolds
number of 2157.0 (see Reference [44]).
A summary of current and previous simulations of compressible decaying isotropic tur-

bulence appears in Table II. It should be noted that the grid sizes stated for the present
computations do not include the �ve-point overlap at domain boundaries.
Evolution of the turbulent kinetic energy is shown in Figure 1, where

K = 〈�(u′2 + v′2 + w′2)〉: (45)

In the �gure, time has been scaled by the initial eddy turnover time tet, which is de�ned
as the ratio of K to the dissipation rate. An approximate time step of �t=tet = 0:0004 was
employed for all simulations. Along with the present time-implicit simulations, one result
was also obtained using the explicit RK4 scheme. Computations on the �nest grid using no
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Table II. Summary of decaying isotropic turbulence simulations.

Reference SGS model Numerical method Grid size

Spyropoulos and Blaisdell [44] None Spectral (128× 128× 128)
Present None Finite di�erence (128× 128× 128)
Present Smagorinsky Finite di�erence (64× 64× 64)
Present Dynamic Finite di�erence (64× 64× 64)
Present Smagorinsky Finite di�erence (32× 32× 32)
Present Dynamic Finite di�erence (32× 32× 32)
Spyropoulos and Blaisdell [44] Dynamic Spectral (32× 32× 32)

Figure 1. Time history of decaying turbulence kinetic energy.

subgrid-stress model are indistinguishable from the highly resolved spectral computation of
Spyropoulos and Blaisdell [44], providing validation of the current numerical approach and
computer code. Comparison of the time-implicit computations with those employing the RK4
scheme also indicates that second-order temporal accuracy is su�cient to attain DNS resolution
for this case. Also seen in Figure 1 are four LES solutions on two separate grid systems.
Both LES computations on the (64× 64× 64) grid give virtually identical results, implying
that there is little sensitivity to the form of the SGS model. Although the LES calculations
should be compared to �ltered DNS solutions, for this low Reynolds number example, the
application of a sharp cuto� �lter resulted in values of K that were only slightly di�erent
than those of their un�ltered counterparts. LES results on the (64× 64× 64) grid are observed
to lie slightly below those of the DNS solutions. Examination of the energy spectrum will
reveal that this is due to a reduction of the turbulent kinetic energy in the higher resolved
wave numbers. Computations on the (32× 32× 32) grid lie signi�cantly below those of the
DNS, indicating that this mesh is probably too coarse to be employed for the �nite-di�erence
calculations.
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Figure 2. Time history of decaying turbulence eddy viscosity model constant.

The time-varying coe�cient C from the present and spectral dynamic model simulations
appears in Figure 2. These are compared with the constant value of 0.092 assumed in the
Smagorinsky model. Values of C obtained from the current computation on the (32× 32× 32)
grid are considerably greater than those of the spectral result, again illustrating the excessive
coarseness of this mesh. As the grid is re�ned, the level of C from the current solution ap-
proaches that of the spectral result. It is pointed out that as the computational mesh is re�ned,
eventually all important length scales will be resolved without the need for subgrid-stress mod-
elling. Thus the coe�cient C will tend toward zero and a DNS solution will be recovered.
This feature of the dynamic subgrid-stress model is consistent with the results of Figure 2.
Corresponding evolutions of the turbulent Prandtl number can be found in Reference [24].
Displayed in Figure 3 is the instantaneous three-dimensional energy spectrum for the

current solutions at t=tet = 0:2985. No signi�cant di�erences between the two LES results
are indicated, con�rming again that the form of the subgrid stress model is not an important
factor for this simulation. For the (64× 64× 64) grid, both LES computations compare well
with the more resolved no-model (DNS) simulation over most of the wave number range.
The coarser (32× 32× 32)-grid solutions have less energy in the higher wave numbers, which
is responsible for the reduced turbulent kinetic energy of the LES in Figure 1.
Recent computations by Visbal and Rizzetta [33] have directly compared the e�ciency of

the present technique to that of standard low-order methods for this same problem. It was
shown that a second-order scheme requires a grid between two to four times �ner than that of
the compact/�ltering approach in order to achieve the same level of accuracy. This translates
to an increase in the total number of grid points by a factor of 8–64. In terms of CPU time
required per grid point per time step, the high-order scheme exceeds that of a second-order
method by a factor of 2.0. Therefore, a signi�cant net gain in e�ciency is achieved with the
high-�delity formulation.
A more comprehensive investigation of compressible decaying isotropic turbulence is be-

yond the scope of the present work. Further simulations would be required, however, to

Published in 2003 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:665–693



678 D. P. RIZZETTA, M. R. VISBAL AND G. A. BLAISDELL

Figure 3. Instantaneous decaying turbulence three-dimensional energy spectra at t=tet = 0:2985.

address issues concerning grid size and �ltering operations. Examples at higher Reynolds
numbers may provide a more severe test of the capabilities of the numerical method, and
such cases are available for comparison [44].

4.2. Turbulent channel �ow

A number of large-eddy simulations for low-Reynolds number channel �ows have been per-
formed, some of which are documented in References [3–7, 16–18], and [49, 50]. For the
situation considered here, x; y; z are taken as the streamwise, wall normal, and spanwise di-
rections respectively, where the origin of the co-ordinate system is located at the upstream
lower inboard boundary of the channel �ow�eld. The Reynolds number Re=7700, corre-
sponds to the oil channel experiment of Kreplin and Eckelmann [46] which may be used for
comparison of �uctuating velocity components, along with the mean pro�les of Eckelmann
[47].
The non-dimensional computational domain size is (2�× 1×�) in (x; y; z), which is dis-

cretized by a baseline grid of (65× 61× 65) points. Mesh spacing is constant in the x and
z directions, and geometrically stretched in y from the walls, where �y=0:001. This corre-
sponds to �y+ =0:389, �x+ =40:70 and �z+ =20:35.
Periodic boundary conditions are applied for all variables in the streamwise and spanwise

directions. At the channel walls, the no slip condition is satis�ed, along with an isothermal
surface and a vanishing normal pressure gradient, which are enforced with fourth-order spatial
accuracy. Because of the periodic streamwise boundary condition, the �ow cannot sustain a
streamwise pressure gradient. It is therefore necessary to introduce an arti�cial source term as
a driving mechanism to mimic an imposed constant pressure gradient, thereby maintaining a
�xed mass-�ow rate. The source term appearing in Equation (1) is generated by considering
the steady two-dimensional limiting form of the �-momentum equation and integrating over
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the channel height, 06�6N , resulting in

s1 =
[
Re
∫ N

0

(
1
J

)
d�
]−1

[(
�̃�2y
J

)
@ũ
@�

]∣∣∣∣∣
�=N

−
[(
�̃�2y
J

)
@ũ
@�

]∣∣∣∣∣
�= 0

 (46)

and

s2 = s3 = 0 (47)

Equation (46) is evaluated instantaneously and implemented numerically by averaging surface
values over the lower and upper channel walls, which are located at �=0 and N , respectively.
Uniform properties of ��; �p, and T̃ were used to initialize the �ow�eld along with ṽ= w̃=0,

and ũ was distributed according to the empirical polynomial approximation of Pai [48]. Ran-
dom perturbations with a maximum amplitude of ±0:05 were then superimposed upon ũ; ṽ; w̃,
and the �ow�eld was allowed to evolve to a fully turbulent state. A time increment was
speci�ed as �t=0:001, and temporal data was collected for a minimum of 40 000 steps for
each case considered. Mean and RMS values were averaged over x–z planes to obtain the
one-dimensional pro�les considered here, as is common for domains with periodic boundaries.
Large-eddy simulations employing the Smagorinsky subgrid stress model were carried out with
the values CS =0:092 and A+ =25:0, which typically have been used in previous computa-
tions. Since the �ow is essentially incompressible, the isotropic portion of the subgrid-scale
stress tensor has been neglected, and a constant Prandtl number of 0.9 was assigned.
Time-mean streamwise velocity pro�les for the outer channel region appear in Figure 4,

along with the experimental measurements of Eckelmann [47] at two di�erent Reynolds num-
bers. Only minor variations between the respective computations are apparent. It should be
noted, however, that because the velocity is normalized by the centreline value, the pro�les
collapse to a similarity form. In each case, there is actually a slight overshoot of the centreline
velocity, which for the no-model solution is approximately 7.5%. This is incurred due to the

Figure 4. Planar averaged channel mean streamwise velocity pro�les in outer �ow region.
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Table III. Channel �ow friction velocity.

Reference SGS model Grid size u�−m=ucl−m

Present None (35× 61× 35) 0.0415
Present None (65× 61× 65) 0.0535
Present None (95× 91× 95) 0.0547
Present Smagorinsky (65× 61× 65) 0.0512
Present Dynamic (65× 61× 65) 0.0515
Kim et al. [49] None (192× 129× 160) 0.0553
Okong’o and Knight [50] Smagorinsky (65× 65× 65) 0.0514
Kreplin and Eckelmann [46] Experiment 0.0505

Figure 5. Planar averaged channel mean streamwise velocity pro�les in near wall region.

non-dimensionalization by ur , which is not known a priori. Although the channel mass �ow
is established by the initial conditions of the computation, the velocity pro�le responds to the
source term (Equation (46)) which also evolves as part of the solution. Thus, the variation
in mean centreline velocity may be interpreted as the computed results corresponding to the
somewhat higher Reynolds number Re=8300.
In addition to computations performed on the baseline grid, no-model calculations were

also carried out on grids with dimensions (95× 91× 95) and (35× 61× 35). The resulting
time-mean friction velocity from all computations are listed in Table III, along with those
of Kim et al. [49], Okong’o and Knight [50], and the experimental data of Kreplin and
Eckelmann [46]. The computation of Kim et al. [49] at Re=6600 a�ords a highly resolved
DNS spectral solution. Present LES values compare favourably with the experiment, and with
the recent computation of Okong’o and Knight [50] which was performed on a similar grid.
Apart from the coarse-grid solution, all of the no-model results are higher than those of LES
computations.
Pro�les of the mean streamwise velocity in the near-wall region, normalized by the friction

velocity and plotted as a function of the law-of-the-wall co-ordinate y+, are displayed in
Figure 5. Also found in the �gure are the data of Eckelmann [47], the linear pro�le, and the
logarithmic correlation which was compared to experimental values [47]. The LES pro�les
are virtually identical, and all results compare well with the data.
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Figure 6. Planar averaged channel �uctuating velocity pro�les in outer �ow region.

For results presented in Figures 6, 7, and 9, velocity components denoted by u′; v′; w′ are
meant to indicate RMS values. Shown in Figure 6 are �uctuating velocity pro�les in the outer
portion of the channel. It is evident that the dynamic model LES and no-model solutions are
virtually identical. All streamwise velocity (u′) pro�les compare well with the Kreplin and
Eckelmann [46] experiment. The spanwise velocity (w′) comparison is reasonable, but the
normal velocity (v′) is not well predicted. Generally, the Smagorinsky model LES solution
compares less favourably with the data due to excessive dissipation. Corresponding near-wall
�uctuating velocity pro�les are presented in Figure 7 as a function of the law-of-the-wall co-
ordinate y+. The behaviour here is identical to the outer pro�les in that the dynamic model
LES and no-model solutions are quite similar, the streamwise velocity (u′) component is well
predicted in each case, and the Smagorinsky model LES solution compares less favourably
with the experiment.
A grid resolution study of the no-model case was performed for the channel �ow�eld. The

no-model case was selected for this investigation because the �ne-scale structures, which are
modelled in the LES computations, should be most sensitive to grid re�nement. As mentioned
previously, solutions for this case were obtained on coarse, baseline, and �ne computational
meshes. The mean streamwise and �uctuating velocity components resulting from this study
are seen in Figures 8 and 9, respectively, where the DNS of Kim et al. [49] has been
provided for comparison. It is noted in Figure 9 that the pro�les of Kim et al. [49] have
peaks in the near-wall region which are not as sharp as those of the present results. This
is consistent with the lower Reynolds number employed in that simulation. Although it is
apparent from the �gures that the coarse-grid result is not resolved, a consistent trend with
grid re�nement is observed. Moreover, results on the baseline and �nest grids are in close
agreement, indicating that �ne-scale structures, particularly on the �ne grid, are adequately
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Figure 7. Planar averaged channel �uctuating velocity pro�les in near wall region.

Figure 8. E�ect of grid resolution on planar averaged channel mean streamwise velocity
pro�les in near wall region for no-model case.

de�ned. This demonstrates that mesh spacings of the baseline grid given in wall units on page
20, a�ord reasonable resolution. Corresponding near-wall �uctuating velocity components may
be found in Reference [24], where a similar trend is indicated.
A representation of the �ne-grid no-model �ow�eld is displayed in Figure 10 in terms of

instantaneous contours of the z-component of vorticity at the channel midspan (z=�=2), and
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Figure 9. E�ect of grid resolution on planar averaged channel �uctuating velocity pro�les
in outer �ow region for no-model case.

Figure 10. Instantaneous channel �z contours at z=�=2 and velocity
contours at y=0:0328 for no-model case.

the streamwise velocity on an x–z plane in the near-wall �ow at y=0:0328 (y+ =12:75).
The vorticity contours clearly illustrate hairpin-like structures in the near-wall region, while
the pattern seen in the velocity contours is characteristic of low-speed streaks, both of which
typify wall-bounded turbulent �ows.
Instantaneous planar averaged eddy-viscosity pro�les appear in Reference [24]. While the

maximum values of those pro�les was quite small (�t¡0:3), the time-mean eddy viscosity
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could be substantially larger. The small instantaneous values of �t , along with the grid resolu-
tion study, indicate that most of the turbulent energy for this �ow is contained in the resolved
structures. A similar conclusion was drawn by Okong’o and Knight [50].

4.3. Flow past a circular cylinder

Large-eddy simulations for the �ow past a circular cylinder at a Reynolds number of Re=3900
have been performed by Beaudan and Moin [51], Mittal and Moin [52], and Kravchenko and
Moin [53]. Similar computations at a Reynolds number of Re=5600 have also been carried
out by Jordan and Ragab [54]. This situation represents a test for numerical methods which are
capable of simulating regions with geometric curvature. Particle imaging velocimetry [51] and
hot-wire experimental data [55] are available for comparison. In previous LES computations,
it was found that the Smagorinsky SGS model did not provide a correct description of the
�ow�eld in laminar regions where large gradients were present [51].
Current simulations were carried out on computational grids that consisted of (199×

197× 53) points in the radial, circumferential, and spanwise directions, respectively.
A Cartesian co-ordinate system was established with an origin coincident with the cylin-
der longitudinal axis, where (x; y; z) were oriented streamwise, vertical, and spanwise. Grid
points were clustered near the cylinder surface, with a minimum normal spacing of 0.001, and
non-uniformly stretched to an outer domain boundary that was situated 100 cylinder diame-
ters from the origin. A concentration of circumferential grid lines near the wake centreline
facilitated resolution of the experimentally measured region. Table IV provides a comparison
of the mesh parameters for the present calculations with those of Beaudan and Moin [51]
and Kravchenko and Moin [53]. Both of the prior computations employed numerical methods
which provided spectral resolution in the spanwise direction. It should also be noted that
Kravchenko and Moin utilized a high-order spline technique, implemented on a system of
four patched grid networks and having an equivalent single mesh size of (205× 185× 48)
[53]. Unless explicitly stated otherwise, results of the present computations will correspond
to designations B1, B2, and B3 of Table IV.
Along the upstream portion of the outer boundary, steady freestream conditions were pre-

scribed for all dependent variables, which is consistent with previous numerical simulations
[51, 53]. Downstream, the pressure was speci�ed as freestream, and streamwise (x) gradients
of other variables were forced to vanish. The no slip condition was invoked on the cylinder

Table IV. Summary of cylinder �ow simulations.

SGS Spanwise
Reference Key model extent Grid size

Present A None � (199× 197× 53)
Present B1 None �=2 (199× 197× 53)
Present B2 Smagorinsky �=2 (199× 197× 53)
Present B3 Dynamic �=2 (199× 197× 53)
Beaudan and Moin [51] B-M1 None � (144× 136× 48)
Beaudan and Moin [51] B-M2 Smagorinsky � (144× 136× 48)
Beaudan and Moin [51] B-M3 Dynamic � (144× 136× 48)
Kravchenko and Moin [53] K-M Dynamic � 1,333,472
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Figure 11. Spanwise averaged cylinder mean surface pressure distributions.

surface, together with fourth-order accurate approximations for an adiabatic wall and zero
normal pressure gradient. At the spanwise boundaries, periodicity was applied.
The �ow�eld for a no-model computation was initialized from a preliminary two-dimen-

sional unsteady result, and a solution was evolved su�ciently long in time to arrive at a
time-asymptotic state. Temporal data was then collected for 20 000 time steps, corresponding
to more than eight cycles of the fundamental Strouhal frequency. LES computations were
initiated from the no-model �ow�eld, and allowed to develop for 4000 time steps before
temporal information was recorded. The time step size in all computations was �t=0:002.
Mean, RMS, and spectral information was averaged in the spanwise direction to arrive at the
results presented below.
Computed mean surface pressure distributions are presented in Figure 11, along with experi-

mental data [53]. Agreement between the simulations and the measurements is reasonable
for all calculations, particularly in the upstream region. The dynamic model LES result lies
closer to the experimental data on the aft cylinder surface. Distributions of the mean wake
centreline velocity are seen in Figure 12. Two alternate sets of measurements [53] are provided
for comparison. Here again, the dynamic model LES solution more closely resembles the
experimental data.
In order to investigate the e�ect of spanwise grid resolution, two computational domains

were considered which extended over distances of both � and �=2 in the z direction (see
Table IV). Because periodic conditions are enforced in the spanwise direction, the span must
be su�ciently long such that large-scale structures are not arti�cially forced to become two-
dimensional. It has been established by Kravchenko and Moin [53] that a spanwise extent of
�=2 satis�es this constraint. By maintaining a �xed number of mesh points, grid resolution
could be examined with a minimal expenditure of computational resources by varying the span.
Mean surface pressure results for the no-model case on each grid system appear in Figure 13.
The no-model computations were again used for this investigation as they would be most
sensitive to variations in mesh spacing. Subgrid-scale modelling in LES calculations should be
able to tolerate a greater lack of resolution. The �gure indicates, that while di�erences between
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Figure 12. Spanwise averaged cylinder mean wake centreline streamwise velocity distributions.

Figure 13. E�ect of spanwise grid resolution on spanwise averaged cylinder mean surface
pressure distribution for no-model case.

the two solutions are not large, the �ne-grid result compares better to the experimental data.
This is an indication that the no-model results for this case are under-resolved.
A number of results from the present cylinder �ow computations are summarized in

Table V, along with those from previous calculations and experimental data. Apart from the
location of the mean primary separation point 
S−m, the dynamic model LES solution (B3)
compares more favourably with measured values than the no-model (A, B1) or Smagorinsky
(B2) results.
Found in Figure 14 are vertical distributions of the mean streamwise velocity component.

In general, the dynamic model LES solution a�ords the best comparison with experimental
data. Corresponding distributions of the mean vertical velocity component are illustrated in
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Table V. Cylinder �ow results.

Key Cd−m CpB−m St 
S−m LR−m umin−m

A 0.91 −0:74 0.210 86.7 2.01 −0:34
B1 0.94 −0:79 0.204 87.3 1.74 −0:34
B2 0.94 −0:81 0.211 87.4 1.67 −0:38
B3 0.97 −0:85 0.213 88.2 1.48 −0:31
B-M1 0.96 −0:89 0.216 85.3 1.56 −0:33
B-M2 0.92 −0:81 0.209 84.8 1.74 −0:33
B-M3 1.00 −0:95 0.203 85.8 1.36 −0:32
K-M 1.04 −0:94 0.210 88.0 1.35 −0:37
Exp. [53] 0:99±0:05 −0:88±0:05 0:215±0:005 86:0±2:0 1:40±0:10 −0:24±0:10

Figure 14. Spanwise averaged cylinder mean streamwise velocity distributions in near wake.

Figure 15. Because the magnitude of this component is small, only slight di�erences between
the respective solutions are evident, except at x=1:54.
Fluctuating velocity component distributions are presented in Figures 16–18, where once

again RMS values are denoted by u′; v′. For u′2, the dynamic model LES results appear to
agree better with the experiment in the near wake (Figure 16). This trend is also generally
re�ected in the vertical velocity �uctuation v′2 seen in Figure 17. There does not appear to
be a clear preferred performance trend for any of the solutions at all streamwise stations in
terms of the Reynolds shear stress distributions shown in Figure 18.
One-dimensional velocity frequency spectra on the wake centreline (y=0) at several stream-

wise stations are provided in Figure 19. The frequency (!) has been normalized by the
fundamental Strouhal shedding frequency in order to compare with experimental data [55].
Similarly, magnitudes of the velocity spectra (E22) have been normalized by their values at
the minimum frequency. Spectral distributions were generated for all spanwise positions at
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Figure 15. Spanwise averaged cylinder mean vertical velocity distributions in near wake.

Figure 16. Spanwise averaged cylinder �uctuating streamwise velocity distributions in near wake.

each streamwise location. The resultant spectra were then spanwise averaged in order to pro-
duce the �gures displayed here. Two discrete peaks are observed in the experimental vertical
velocity spectra of Figure 19. The �rst peak corresponds to the primary Strouhal shedding
frequency (!=!St = 1:0), which is resolved by all computations. Also evident, is the second
harmonic of the fundamental frequency [55], that is not well de�ned by any of the numerical
solutions, especially far downstream where it was not possible to completely resolve all details
of the complicated �ow structure.
A comparison between the Smagorinsky and dynamic model eddy-viscosity coe�cients is

fashioned by the instantaneous spanwise averaged contours in Figure 20. The contours indicate
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Figure 17. Spanwise averaged cylinder �uctuating vertical velocity distributions in near wake.

Figure 18. Spanwise averaged cylinder Reynolds shear stress distributions in near wake.

large eddy viscosity values in the separating shear layers of the Smagorinsky solution which
are absent for the dynamic model, as was also observed by Beaudan and Moin [51]. Contours
appearing in the �gure have been normalized by the maximum eddy viscosity magnitude
from each respective solution so that the comparison could be made with a consistent scale.
Although the absolute maximum eddy viscosity within the domain is larger for the dynamic
model, the high-valued regions are con�ned to the rotational structures of the wake, as opposed
to the near-wall region.
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Figure 19. Spanwise averaged cylinder one-dimensional vertical velocity
frequency spectra on wake centreline.

5. SUMMARY AND CONCLUSIONS

A numerical method has been described for performing large-eddy and direct-numerical simu-
lation. The scheme employs a sixth-order non-dissipative compact �nite-di�erence algorithm,
which is used in conjunction with a tenth-order non-dispersive spatial �lter. A series of vali-
dating computations were performed with time-implicit second-order temporal accuracy in
order to demonstrate application of the method, as well as to evaluate the performance of
subgrid-scale stress models for LES computations. These examples included the decay of
compressible isotropic turbulence, turbulent channel �ow, and the subsonic transitional �ow
past a circular cylinder.
The present no-model computations of decaying compressible turbulence were found to

agree extremely well with a highly resolved spectral solution. LES calculations on coarser
grids compared favourably with the no-model (DNS) result and with a previous spectral
computation.
For the simulation of turbulent channel �ow, both no-model and LES solutions gave reason-

able results. This was due to the nature of the �ow for which it was possible to resolve most
of the signi�cant �ow scales, so that few di�erences were observed between the no-model
and LES dynamic model solutions. Performance of the Smagorinsky model LES computation
was slightly worse than that of the no-model or dynamic model simulations due to excessive
dissipation.
The computation of a transitional cylinder �ow�eld illustrated the ability of the method to

perform computations of wall-bounded �ows on non-uniform curvilinear meshes. Extensive
comparisons were carried out between experimental measurements and numerical simulations.
The dynamic model LES computation provided superior performance in term of surface pres-
sure, centreline velocity, and a number of time-mean quantities of interest. In addition, the
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Figure 20. Instantaneous spanwise averaged cylinder eddy viscosity contours.

complex wake region appeared to be better de�ned by the dynamic model, as judged by both
mean and �uctuating quantities over a majority of the measured domain.
The present scheme appears to provide a robust and accurate means for performing direct

numerical and large-eddy simulations of practical �ows. To further explore bene�ts of the
scheme, applications at both higher Reynolds numbers and higher Mach numbers than those
presented here should be attempted. Supersonic �ows, including those with shock waves,
should be considered.
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